OPNET网络仿真分析-目 录

版权声明:本书为作者版权所有,仅用于学习,请勿商用

OPENT网络仿真分析 (作者:栾鹏、陈玓玏)

OPNET网络仿真分析-目录
OPNET网络仿真分析-电子版

需要购买本书全部内容的同学,赞赏20块,并在赞赏中备注或在博客评论中,备注购买opnet书籍,且留下您的邮箱,编者会在一天内把电子书发送到邮箱。
在这里插入图片描述

目 录

第一章 OPENT基础
1.1、OPNET简介
1.1.1、网络仿真简介
1.1.2、OPNET简介
1.1.3、OPNET Modeler
1.1.3.1、OPNET Modeler主要功能
1.1.3.2、OPNET Modeler主要应用
1.1.4.3、OPNET Modeler主要特点
1.1.4.4、OPNET Modeler仿真步骤
1.1.4.5、标准模型库
1.2、OPNET安装教程
1.3、基础概念
1.4、OPNET文件存储内容
1.5、OPNET中英文对比
1.6、OPNET软件使用
1.6.1、菜单栏介绍
1.6.2、工具栏介绍
第二章 网络搭建
2.1、网络框架
2.2、子网模型
2.2.1、场景管理
2.2.1、场景配置
2.3、节点模型
2.3.1、队列与处理器
2.3.2、包流
2.3.3、收发信机
2.3.3.1、无线发信机
2.3.3.2、无线接收机
2.3.3.3、点对点发信机
2.3.3.4、点对点收信机
2.3.4、定向天线
2.4、进程模型
2.4.1、进程概念
2.4.2、多进程
2.4.3、状态
2.5、轨迹轨道
2.5.1、轨迹的定义
2.5.2、轨迹的应用
2.5.3、轨迹修改
2.5.5、卫星轨道的使用
2.5.6、轨迹模块定义
2.6、链路模型
2.6.1、有线链路的链路模型
2.6.2、管道函数
2.6.2.1、管道函数的创建修改
2.6.2.2、有线无线中的管道类别
2.6.2.3、点对点链路管道阶段函数
(1)传输时延阶段
(2)传播时延阶段
(3)纠错阶段
2.6.2.4、总线型管道模型
(1)封闭性计算阶段
(2)传输时延阶段
(3)传播时延阶段
(4)冲突检测阶段
(5)误码数目分配阶段
(6)纠错阶段
2.6.2.5、无线链路管道阶段函数
第一部分:无线发信机管道阶段流程
第二部分:无线接收机管道阶段流程
第三部分:无线链路管道阶段函数
2.7、拓扑
第三章 代码实现
3.1、变量
3.1.1、变量区别
3.1.2、变量定义
3.1.3、随机变量分布
3.2、结构体与列表
3.2.1、结构体
3.2.2、列表
3.3、常量
3.3.1、对象常量
3.3.2、中断类型常量
3.4、对象属性
3.4.1、对象拓扑
3.4.2、属性
3.4.3、对象位置
3.4.4、对象操作
3.5、事件
3.5.1、事件附件状态
3.5.2、中断
3.5.2.1、多进程下的中断设置
3.5.2.2、仿真开始中断
3.5.2.3、自中断
3.5.2.4、进程中断
3.5.2.5、远程中断
3.5.2.6、流中断
3.5.2.7、统计量中断
3.5.2.8、其他中断
3.5.3、ICI
3.5.3.1、ICI格式定义
3.5.3.2、ICI 操作
3.5.3.3、ICI与事件
3.5.3.4、ICI与数据包
3.6、数据包
3.6.1、数据包格式的定义
3.6.2、数据包的创建
3.6.3、数据包字段域
3.6.3.1、数据包字段的设置
3.6.3.2、数据包字段读取
3.6.3.3、字段域操作
3.6.4、数据包属性域
3.6.5、数据包传输
3.6.6、数据包其他操作
3.6.7、TDA
3.7、统计量
3.7.1、统计量的定义
3.7.2、统计量的捕获模型Capture Mode
3.7.3、绘制风格Draw style
3.7.4、注册统计量
3.7.5、数据收集
3.7.6、统计量的函数计算
3.7.7、选择想要收集的统计量
3.7.8、数据显示及导出
第四章 调试演示
4.1、调试
4.1.1、仿真设置
4.1.2、ODB调试
4.1.2.1、调试输出窗口
4.1.2.1.1、控制台输出窗口
4.1.2.1.2、动画输出窗口
4.1.2.1.3、仿真进度窗口
4.1.2.2、记录窗口
4.1.3、调试技巧
4.1.3.1、语法调试技巧
4.1.3.2、逻辑调试技巧
4.2、动画
第五章 常见问题及错误
5.1、常见错误
5.2、常见问题
实例1:创建项目与场景
实例2:分布式子网搭建
实例3:为AP和用户创建节点模型
实例4:创建数据包接收进程模型
实例5:定向天线方向图
实例6:卫星轨迹
实例7:配置星状网实例操作
实例8:对象属性设置
实例9:发送回应的包交互实现
实例10:进程中断
实例11:随机分布
实例12:结构体与列表
实例13:统计量的使用
实例14:TDA使用

已标记关键词 清除标记
相关推荐
NNBP 1.0用法说明 本程序是BP算法的演示程序, 其中的Levenberg-Marquardt算法具有实用价值. 程序主界面如下: 一、网络训练 程序默认状态是样本训练状态,现将样本训练状态下的如何训练网络进行说明: 1. 系统精度: 定义系统标精度,根据需要定义网络训练误差精度.误差公式是对训练出网络的输出层节点和实际的网络输出结果求平方差的和. 2. 最大训练次数: 默认为10000次,根据需要调整,如果到达最大训练次数网络还未能达到标精度,程序退出. 3. 步长: 默认为0.01,由于采用变步长算法,一般不需人工设置. 4. 输入层数: 人工神经网络的输入层神经元的节点数. 5. 隐含层数: 人工神经网络的隐含层神经元的节点数. 6. 输出层数: 人工神经网络的输出层神经元的节点数. 7. 训练算法: 强烈建议选取Levenberg-Marquardt算法,该算法经过测试比较稳定. 8. 激活函数: 不同的网络激活函数表现的性能不同,可根据实际情况选择. 9. 样本数据的处理: 由于程序没有实现归一化功能, 因此用来训练的样本数据首先要归一化后才能进行训练. 其中: 数据输入: 就是选择用来训练的样本的文件,文件格式为每个参与训练网络的样本数据(包括输入和输出)占用一行,数据之间用空格隔开. 存储网络: 就是用来存放最终训练成功的网络权值等信息的文件,在仿真时调用用. 保存结果: 网络训练的最终结果,副产品,可丢弃,用来查看网络训练的精度. 10. 训练 点击该按钮用来训练网络。 二、网络仿真 首先要点击按钮 切换到数据仿真状态. 界面如图: 调入训练好的网络,然后选择用来仿真的数据(只包含输入层神经元的节点数),点击仿真按钮即可。 调入网络: 选择已经训练好的网络文件,假设net_lm_sigmoid_16.txt文件是已经满足精度和泛化能力较好的网络文件,就调入该文件。 数据输入: 选择用来仿真的数据文件,该文件格式同前面介绍的用来训练网络的文件的格式,但需要去掉用网络来模拟的参数,只提供用来测试的网络输入层数据。 仿真结果: 用来保存对测试数据仿真后得到结果文件,即为所想要的数据。
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值