
全栈工程师开发手册 (作者:栾鹏)
主流的推荐系统算法大致分为两类:
- 基于用户行为数据的协同过滤算法
- 基于内容数据的过滤算法
大致而言,基于内容数据的算法适用于cold start,即用户和项目都比较少的时候,而基于用户行为数据的协同过滤算法在用户和项目较多,数据比较丰富的情况下有较高的准确率。
除此之外,还包括基于社会网络数据的推荐,基于语境(上下文)感知数据的推荐,基于心理学数据的推荐等等。
基于用户行为数据的算法
1.1 基于用户的协同过滤算法(user-based CF)
一个用户喜欢和他具有相似喜好的用户喜欢的项目, 两个用户喜欢的项目交集越大, 这两个用户越相似。
两个用户兴趣相似度的计算可以有多种方法,常见的如 Pearson相关(皮尔逊相似性)和余弦相似度计算。
适用场景和优缺点:这个是cf中的一种ÿ